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1 Introduction

The performance of many LLNL applications is dominated by the cost of main memory
accesses. Worse, many current trends in computer architecture will lead to substantial
degradation of the percentage of peak performance obtained by these codes. This project
yields novel techniques that alleviate this problem in SMP-based systems, which are com-
mon at LLNL. Further, our techniques will complement other emerging mechanisms for
improving memory system performance, such as processor-in-memory. The exploration
of existing dynamic access ordering (DAO) mechanisms adapted to SMPs and the de-
velopment of new memory performance optimization techniques will lead to significant
improvements in run times for LLNL applications on future computing platforms, effec-
tively increasing the size of the platform.

∗This work was performed while Dr. McKee was at the Unive rsity of Utah; she has since relocated

to Cornell University.
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In this project, we have focused on a range of techniques to overcome the performance
bottleneck of current multiprocessor systems and to increase the single-node efficiency.
These efforts include the design and implementation of a toolset to analyze memory access
patterns of applications, the exploration of regularity metrics and their use to classify
code behavior, and a set of microbenchmarks to assess and quantify the performance of
SMP memory systems. We will make these tools available to the general laboratory user
community to help the evaluation and optimization of LLNL applications.
In addition, we explored the use of Dynamic Access Ordering (DAO) techniques in

the realm of shared memory multiprocessors. The most critical part of the latter is the
need to maintain coherence among reordered accesses due to possible aliasing. We have
worked on several design alternatives to guarantee consistency in such systems without
changing the user environment. This guarantees that such novel memory systems will be
directly applicable for existing and future HPC codes at LLNL.
In the following section we will detail these efforts and discuss the results achieved

within this project

2 Memory Behavior Studies

In the first part of this project we focused on memory access regularity of applications.
We defined metrics to quantify regularity in codes, and developed a toolset to evaluate
existing codes and to locate potentials for optimizations. This work is summarized in
Tushar Mohan’s University of Utah Master’s of Science thesis [?], and was the subject
of a seminar presented at LLNL on December 3, 2002. Our work has demonstrated that
applications with highly regular access patterns are amenable to traditional optimization
techniques, although they can also benefit from DAO mechanisms. Applications with
irregular access patterns require more advanced methods, such as DAO mechanisms.

2.1 Motivation

Over the last two decades the concept of locality has been well understood and exploited.
Spatial locality is the likelihood that a location near a recently accessed location will be
accessed. Temporal locality refers to the likelihood that a recently accessed location will
be accessed again. The success of and the current dependence on caching are testimony
to the presence of locality in common codes. Locality concepts are limited to references
with proximate or repeating accesses, and cannot capture the existence of other patterns.
On the other hand, modern processor architectures and memory controllers are capable
of exploiting the presence of other kinds of access patterns, such as strided memory
accesses (successive memory accesses that have a constant difference in address). The
Power3 processor, for instance, can detect and prefetch such strided accesses [3]. The
Impulse memory controller can be configured to prefetch and gather strided memory
elements [2]. To better understand (so that we may improve) the performance of codes
on such architectures, we find it useful to extend the concept of locality to include the
presence of strided memory accesses.
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2.2 Regularity Metrics

Regular sequences, or streams, are precisely arithmetic progressions, defined as:

xn = xn−1 + c

where c is a constant and xn is the n
th reference in the regular sequence. As an illus-

tration, consider the following series of numbers: 0 4 8 12 16 20. This constitutes a
regular sequence with stride four, length six and starting element 0. The following metric
can be used to quantify the spatial regularity of an application:

Rspatial =

∑

| si |

N

where | si | is the length of the i
th sequence and N is the total number of references.

If we do not allow a reference to be included in more than one sequence, the metric is
a positive number not greater than unity. Higher metric values imply greater spatial
regularity.
We have used this regularity metric to separate applications into two classes: regular

and irregular. We have used this distinction and other stream statistics, such as the mean
length of sequences and variance in sequence lengths, to optimize codes. More details
can be found in [?].

2.3 Toolset to Quantify Regularity in Applications

Based on these metrics, we have developed a toolset to detect and to quantify memory
access behavior in applications. This toolset applies the metrics described above, and
hence aids in the characterization of applications and their access patterns. It works
directly on program executables (binaries), rather than on source code. This guarantees
the broadest possible applicability. To achieve this goal, we use existing tools for dynamic
instrumentation.
Figure 1 shows the setup for the stream detection tool. It consists of three separate

components: dsd, mutator and the binary to be instrumented. The mutator is a generic
application (written in C++) that uses the Dyninst library [1] to instrument the binary
of interest. The instrumentation can be one or both of:

• a call for hardware performance monitoring at function entry/exits;

• a call to handle load/store information at every memory access.

A single function, instr , handles both calling contexts, with the arguments de-
termining the context. The mutator can be configured to instrument specific functions
and modules rather than the whole binary. Once the binary has been successfully instru-
mented, the mutator starts dsd – the stream detection module. At this time, the mutator
passes control information, such as its process ID, and the functions instrumented and
their ids, to dsd using the control channel (shown by the bi-directional arrow between
the mutator and dsd). The mutator then starts the instrumented binary. The first time
instr is called, it sets up one-way data and control pipes between itself (the instru-
mented application) and dsd. Conceptually, the control pipes carry information about
function entry/exits, while the data pipes are used to pass PAPI counter values and
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}

libldst.a

dynamically load

Figure 1: Stream Detection Framework

memory access information.1 The direction of information flow is from the application to
dsd. Subsequent calls to instr pass hardware performance counter values or memory
access information (type, address and number of bytes) to dsd. The kernel automatically
blocks the application when the data pipe fills up — typically, dsd processes data slower
than it is generated. In the event that dsd wants to stop sampling a particular function
(perhaps because it is configured to accept a limited number of samples), it signals the
mutator using the control channel. The mutator pauses the application, deletes the
inserted snippets from the function, and resumes the application.

2.4 Results

We have applied our tool to three real applications — gzip,umt98 and smg20002 — and
numerous benchmarks in standard use for architectural and performance explorations.
Using our tool we:

• found and implemented new optimizations in these codes; and

• suggested optimizations that are consistent with earlier work on these codes.

Our results are promising: for gzip we uncovered and implemented two optimiza-
tions that reduce overall memory stalls by a few percent; in FT (a Fast Fourier Trans-
form benchmark) we implement a loop interchange that reduced overall TLB misses and
memory stalls by 58% and 8%, respectively. In many cases our tool suggests optimiza-
tions previously known to benefit the code, while in other cases we suggest new ones.
In most of the codes analyzed, the tool indicates the function(s) to optimize and a set
of applicable optimizations, significantly simplifying the optimization process. Table 1

1Actually, we multiplex the two information flows over a single channel for efficiency and synchro-

nization reasons.
2umt98 and smg2000 are production codes in use at LLNL.
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lists the regularity statistics for the codes. A detailed analysis for each application can
be found in [?]. With the exception of mgrid (which is unoptimized), the data in the
table is for an execution of the optimized binary (-O2 or higher).

Streams Stream Length

Program Reg. Total ]4-32] ]32-128] ]128-16384] > 16384 Mean Dev. Stride Optimization

gzip 0.95 5402 4625 76 17 584 3552 170 1.71 aggressive prefetching,
super-paging and code
restructuring

umt98 0.44 310655 307386 1818 1377 44 31 570 9.4 scatter/gather using IV
in snswp3d

smg2000 0.36 100675 100519 78 74 4 13 108 6.95 code restructuring
mgrid 0.99 82359 52 82307 0 0 91 3.2 8.0 prefetching and tiling in

RESID

swim 1.00 38259 1052 2 37188 17 614 223 4.4 aggressive prefetching,
blocking, padding

su2cor 1.00 50274 33688 289 16317 0 1208 52 10.0 code restructuring, fis-
sion, padding, tiling,
prefetching

CG 0.58 184954 143587 40555 805 7 46 518 5.4 scatter/gather using IV
FT 0.96 755750 734755 20481 513 1 12 23 109.3 loop interchange, array

transposition
BT 0.80 1470357 1419110 51247 0 0 9 4.8 64.8 copying, base-stride

remapping
Untiled

3D JACOBI

1.00 77127 99 76832 196 0 85 26 12.0 tiling

Tiled

3D JACOBI

1.00 61741 61741 0 0 0 11 1 8 none

Untiled

matmult

1.00 88683 8081 0 80602 0 183 4.2 806.0 tiling

Tiled matmult 0.97 1788850 1788805 0 45 0 10 0.5 356.3 none

Table 1: Regularity Statistics
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Figure 2: Regularity Metric

Figure 2 shows the regularity metric for all the applications. Notice the high regularity
in stencil codes such as mgrid, swim and 3D Jacobi, and the far lower metric values for
indirection-vector codes like umt98 and CG. The results are for differing sampling modes:
some sample the complete run of the application, while others take a few samples of
important functions.
In general, high stride values can imply the need for loop interchange and copy-

ing/remapping optimizations for regular codes. We implement a loop interchange in FT

and suggest copying/remapping for BT. Tiling the matmult and Ä3D Jacobi kernels reduces
their mean stream strides. gzip’s low mean stride is the result of a byte-by-byte scan for
repeated strings.
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Mean stream lengths and the distribution of streams with lengths is shown in Figure 3.
Stream lengths are often indicative of applicable optimizations. Applications with many
long streams benefit from tiling; mgrid, swim, su2cor, 3D Jacobi and matmult fall in
this category. Tiled codes exhibit far lower mean stream lengths and variances; we see
this when we compare untiled matmult and 3D Jacobi with their tiled counterparts. A
high variance in stream lengths is present in many irregular codes, such as umt98 and
CG. Regular codes with long streams benefit from prefetching (sequential or stream), and
this is verified for gzip, swim and mgrid.

3 Memory Microbenchmarks

In symmetric multiprocessors (SMPs), which have become the dominant components of
high performance computer (HPC) systems in use at LLNL, several CPUs can simul-
taneously access a shared main memory. Applications running on an HPC are usually
parallelized to take advantage of the SMP’s concurrent memory access capability. How
well the memory system supports the concurrent accesses varies widely — for instance,
bus-based systems offer little support for concurrent accesses to main memory, while
switch-based systems claim to eliminate this problem. Unfortunately, no existing memory
benchmarks previously specifically addressed measuring the effect of concurrent accesses
on SMP memory system performance.
We developed a suite of microbenchmarks to measure the memory performance of

SMP-based machines. These benchmark are automatically generated (from a set of input
options) to cover a large range of different memory access patterns. To test the effect of
concurrent memory accesses on memory performance, each benchmark is multithreaded
and exposes the memory system under investigation to a varying number of concurrent
streams. This allows us to measure the interference of individual streams as well as to
detect bottlenecks and critical loads for different memory architectures.
Portability is an important design goal, and thus we have implemented the suite plat-

form independent and using only standard libraries commonly available on many systems.
To the best of our knowledge, these are be the first benchmarks specifically targeted for
properly measuring the memory performance of SMP-based machines running parallel
applications.
We have used our benchmarks to measure the memory performance of Blue-Pacific

(or Blue) and Snow, two SMP-based, high performance parallel computers in operation
for the Accelerated Strategic Computing Initiative (ASCI) program at LLNL. Our results
demonstrate that thread-level parallelism significantly impacts memory performance even
for a memory interconnection designed to support concurrent memory accesses. Further-
more, we find that that concurrent accesses significantly reduce the benefits of hardware
prefetching.

4 SMP-Aware DAO Techniques

The approaches discussed so far can only affect the memory behavior within the bound-
aries of existing memory systems. To study further improvements, it is necessary to
consider modifications within the memory system hardware itself. One very promis-
ing approach in this direction is the use of remapping techniques, as done, e.g., in the
Impulse system. Data items that are being accessed together but are distributed over
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several cache lines are mapped into a single cache line and can be transferred into the L1
cache in one cache-line fill operation. Similarly, multiple pages can be combined to super
pages, which reduces pressure on the TLB3. Both techniques can drastically reduce the
memory traffic within the whole system as data is packed more densely and bus capacities
are used more effectively. The core component for such a system is a modified memory
controller that implements address remapping within the main memory of the system. It
is programmed from within the applications, either explicitly by the programmer or by
using an appropriate compiler/runtime infrastructure.

4.1 Alias Conflicts under Remapping

Remapping data, however, leads to scenarios in which the same physical data is present
within the system at several virtual locations concurrently. E.g., an item that has been
remapped can be accessed both through the remapping and at the same time at its
original location. A consequence of this observation is that multiple copies of the same
physical data can be present in the system caches under different mappings (or “names”),
leading to potential inconsistencies between those copies. This disrupts the standard
programming model, which is based on a fully consistent memory.
These coherence issues are easier to handle in uniprocessor and single-thread execu-

tions, as all accesses happen within a single thread of execution and their relative order
is predictable and controllable. In multiprocessor systems, several processors concur-
rently access data with potentially different mappings. In order to successfully deploy
such remapping schemes in a multiprocessor scenario, the system has to be augmented
to transparently prevent such inconsistencies, and thereby to provide the expected pro-
gramming model to the end user.

4.2 Novel Coherence Controller

The work within this project includes the design and evaluation of hardware extensions
to existing cache coherence schemes for shared memory multiprocessor systems. They
track existing copies of physical and remapped data and ensure proper updates or invali-
dations whenever necessary to maintain a hardware coherent global memory abstraction.
By relying on existing consistency mechanisms, we expect these extensions to only add
minimal hardware complexity. This will ease integration into existing systems.
Within this project we have investigated several different options for placing and in-

tegrating these extensions. The most promising was an integration into the coherence
controller on the memory side of the system. At this location, it is easy to track mem-
ory translations and the extensions can be built on top of the existing coherence state
machines that are used for the existing coherence support.
The problem of memory coherence for remapped memory regions, however, is only

a subset of a more general problem description. Several copies of the same physical
data at multiple locations can also be introduced by several other sources. Examples
are reconfigurable caches that dynamically change the storage location for cached data
and/or are capable of storing the data at two locations. Like the proposed remapping,
this has the potential to significantly improve memory performance, but is also limited
by the need to maintain coherence for the sake of easy programmability.

3TLB misses create a major memory bottleneck for many applications — especially for those with

very large working sets and irregular access patterns.
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The solution proposed in this project is therefore designed in a way that is generally
capable of solving the coherence problem for arbitrary aliased memory regions, inde-
pendent of the source for their aliasing. To accomplish that, the design is split into
two orthogonal components: a) the coherence engine for aliased memory regions, and
b) proposals on how to describe memory remapping and/or aliasing. While the former
component is generally applicable, the second component is optimization-specific and
independently specifies how aliased memory regions are introduced into the system and
how they can be detected. Between these two components is a well defined interface,
which allows the exchange of the alias engine without impacting the extended coherence
controller. This leads to a general and highly flexible solution and enables the safe use
of memory aliasing.
The initial design of the generalized coherence controller has been completed and has

been formalized. Based on this formal model, the system is currently being implemented
in a simulation framework for experimental testing. As for the second component, the
aliasing of memory regions, we currently focus only on remapping for improved memory
performance. This part is based on and will reuse software components from the Impulse
project. Together, the overall system will show the benefits of both having a generalized
coherence controller for aliased memory regions and the advantages of deploying memory
remapping in shared memory systems without an impact on the programming model.

4.3 Simulation Environment

As with any large-scale architectural project, we use simulation to investigate the large
design space. This simulation infrastructure, however, is currently still under develop-
ment. We have investigated a large range of simulation tools and none of the available
ones fits to the requirements in this project. In particular, the memory system models
in existing simulators are not powerful enough to model the extensions envisioned in this
project. This limitation leads us to design of our own memory backend on top of an
existing processor core simulator. We will mainly leverage two existing simulators (due
to prior experience): SIMT [7], a NUMA multiprocessor simulator based on Augmint [4],
and URSIM [8], which is based on RSIM [5] and was developed within the Impulse project
at the University of Utah [6].

5 Conclusion and Future Work

This project has explored novel techniques to improve memory system performance in
SMP-based systems for applications important to LLNL. We have focused on a range
of techniques to overcome the performance bottleneck of current multiprocessor systems
and to increase single-node efficiency.
Our work has included the design and implementation of a toolset to analyze memory

access patterns of applications, the exploration of regularity metrics and their use to clas-
sify code behavior, and a set of microbenchmarks to assess and quantify the performance
of SMP memory systems. Portions of this work are the basis of a University of Utah
Master’s Thesis, and we are currently preparing a conference paper on them. We plan to
improve support for threaded applications in the toolset, and will make these tools avail-
able to the general laboratory user community to help the evaluation and optimization
of LLNL applications.
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In addition, we have explored mechanisms to maintain memory coherence in SMP-
based systems that use DAO techniques. We have identified that these mechanisms solve
an aliasing problem that occurs with many memory system techniques, and have applied
for NSF funding to continue this research.
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